miR-124-9-9* Potentiates Ascl1-Induced Reprogramming of Cultured M€uller Glia
نویسندگان
چکیده
The M€uller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine M€uller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram M€uller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary M€uller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection.
منابع مشابه
MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts.
Directed reprogramming of human fibroblasts into fully differentiated neurons requires massive changes in epigenetic and transcriptional states. Induction of a chromatin environment permissive for acquiring neuronal subtype identity is therefore a major barrier to fate conversion. Here we show that the brain-enriched miRNAs miR-9/9∗ and miR-124 (miR-9/9∗-124) trigger reconfiguration of chromati...
متن کاملThe microRNA expression profile of mouse Müller glia in vivo and in vitro
The profile of miRNAs in mature glia is not well characterized, and most studies have been done in cultured glia. In order to identify the miRNAs in adult and young (postnatal day 11/12) Müller glia of the neural retina, we isolated the Müller glia from Rlbp-CreER: Stopf/f-tdTomato mice by means of fluorescent activated cell sorting and analyzed their miRNAs using NanoStrings Technologies®. In ...
متن کاملDirect Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident...
متن کاملTransgenic expression of the proneural transcription factor Ascl1 in Müller glia stimulates retinal regeneration in young mice.
Müller glial cells are the source of retinal regeneration in fish and birds; although this process is efficient in fish, it is less so in birds and very limited in mammals. It has been proposed that factors necessary for providing neurogenic competence to Müller glia in fish and birds after retinal injury are not expressed in mammals. One such factor, the proneural transcription factor Ascl1, i...
متن کاملSox2-Mediated Conversion of NG2 Glia into Induced Neurons in the Injured Adult Cerebral Cortex
The adult cerebral cortex lacks the capacity to replace degenerated neurons following traumatic injury. Conversion of nonneuronal cells into induced neurons has been proposed as an innovative strategy toward brain repair. Here, we show that retrovirus-mediated expression of the transcription factors Sox2 and Ascl1, but strikingly also Sox2 alone, can induce the conversion of genetically fate-ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Glia
دوره 64 5 شماره
صفحات -
تاریخ انتشار 2016